
www.manaraa.com

On the use of a reflective architecture to augment

Database Management Systems∗

Nuno Carvalho
Universidade de Lisboa

nunomrc@di.fc.ul.pt

Alfranio Correia Jr.
Universidade do Minho

alfranio@di.uminho.pt

José Pereira
Universidade do Minho

jop@di.uminho.pt

Lúıs Rodrigues
Universidade de Lisboa

ler@di.fc.ul.pt

Rui Oliveira
Universidade do Minho

rco@di.uminho.pt

Susana Guedes
Universidade de Lisboa

sguedes@di.fc.ul.pt

Abstract

The Database Management System (DBMS) used to be a commodity
software component, with well known standard interfaces and semantics.
However, the performance and reliability expectations being placed on
DBMSs have increased the demand for a variety add-ons, that augment
the functionality of the database in a wide range of deployment scenar-
ios, offering support for features such as clustering, replication, and self-
management, among others. The effectiveness of such extensions largely
rests on closely matching the actual needs of applications, hence on a wide
range of tradeoffs and configuration options out of the scope of traditional
client interfaces.

A well known software engineering approach to systems with such
requirements is reflection. Unfortunately, standard reflective interfaces
in DBMSs are very limited (for instance, they often do not support the
desired range of atomicity guarantees in a distributed setting). Some of
these limitations may be circumvented by implementing reflective features
as a wrapper to the DBMS server. Unfortunately, this solutions comes
at the expense of a large development effort and significant performance
penalty.

In this paper we propose a general purpose DBMS reflection architec-
ture and interface, that supports multiple extensions while, at the same
time, admitting efficient implementations. We illustrate the usefulness of
our proposal with concrete examples, and evaluate its cost and perfor-
mance under different implementation strategies.

∗Parts of this report were published in Journal of Universal Computer Science. This work
was partially supported by the IST project GORDA (FP6-IST2-004758).

1

www.manaraa.com

1 Introduction

The usefulness of Database Management Systems (DBMS) owes much to the
standardization of client interfaces, namely, regarding the query language and
call level interfaces, as well as to a precise definitions of atomicity semantics
that are obtained with different configurations. However, the performance and
reliability expectations being placed on DBMSs in a wider range of deployment
scenarios have increased the demand for a variety of clustering [9, 7], replica-
tion [18, 27], and self-management [24] add-ons.

The effectiveness of such extensions largely rests on closely matching the ac-
tual needs of applications, in particular, on what atomicity guarantees are pro-
vided in distributed settings. Although performance and scalability can benefit
from relaxed atomicity guarantees, stronger guarantees reduce the likelihood of
having to resort to human intervention and thus can certainly help to achieve
self-managed systems. The best tradeoff is therefore application specific and
opens up a wide range of implementation and configuration options.

A well known software engineering approach to build systems with such com-
plex requirements is reflection [22, 20]. By exposing at the interface an abstract
representation of the systems’ inner functionality, the later can be inspected and
manipulated, thus changing its behaviour without loss of encapsulation. DBMS
have long taken advantage of this, namely, on the database schema, on triggers,
and when exposing the log.

Unfortunately, standard reflective interfaces in DBMSs fall short, namely,
in inspecting and modifying client requests, on controlling operation schedul-
ing, and on influencing the commit order. These are required to support the
desired range atomicity guarantees in distributed settings and thus play a ma-
jor role in different kinds of middleware. Reflection by wrapping the server
solves some of the issues but at the expense of a large development effort and
significant performance penalty [32, 9, 7]. Another alternative is to build the
extension directly within the server, which has a profound impact in portability
and maintainability [18].

In this paper we propose a general purpose DBMS reflection architecture and
interface, that supports a number of useful extensions while at the same time
admitting efficient implementations. Note that the interface described includes
also some functionality that is available through standard client interfaces, but
which might admit custom implementations with higher performance.

We illustrate the usefulness of the interface with concrete examples, and
evaluate its cost and performance using different implementation strategies, by
comparing Apache Derby and PostgreSQL prototypes with the state-of-the-
art Sequoia JDBC interceptor. We also show that the implementation of such
interface is a small effort and can easily be supported by DBMS vendors.

The work reported here is being developed in the context of an EU funded
research project, GORDA (Open Replication of DAtabases),1 that intends to
foster database replication as a means to address the challenges of trust, in-

1http://gorda.di.uminho.pt/

www.manaraa.com

tegration, performance, and cost in current database systems underlying the
information society. The GORDA project has a mix of academic and indus-
trial partners, including U. do Minho, U. della Svizzera Italiana, U. de Lisboa,
INRIA Rhône-Alpes, Continuent Oy, and MySQL AB.

The rest of this paper is structured as follows. The Section 2 and the Sec-
tion 3 gives some background about reflection on systems and interfaces. The
Section 4 overviews the architecture and API. Section 5 presents the use cases
and the Section 6 discusses the several implementations and evaluates different
approaches to reflection. Finally, Section 7 concludes the paper.

2 Background

Logging, debugging, tracing facilities and autonomic functions, such as self-
optimization or self-healing are some examples of important add-ons to DBMS
that are today widely available [19]. The computation performed by such plugins
is known as a computational reflection, and the systems that provide them are
known as reflective systems. Specifically, a reflective system can be defined
as a system that can reason about its computation and change it. Reflective
architectures ease and smooth the development of systems by encapsulating
functionalities that are not directly related to the application domains. This can
be done to a certain extent in an ad-hoc manner, by defining hooks in specific
points of a system, or with support from a programming language. In both
cases, there is a need for providing a reflective architecture where the interaction
between a system (i.e. base-level objects) and its reflective counterpart is done
by a meta-level object protocol and the reflective computation is performed by
meta-level objects. These objects exhibit a meta-level programming interface.

In this paper, we propose to use hooks into database management systems
to develop a meta-level protocol, along with meta-level objects, which exploit
a set of concepts based on a common transaction processing abstraction (e.g.
parsing, optimization, execution) albeit implementations are highly dependent
on database management systems. By exposing a common meta-level program-
ming interface, our approach eases the development of a variety of plugins (e.g.
replication, query caching, self-optimization). We name it the GORDA DBMS
reflective Architecture and Programming Interfaces (GAPI) [15].

3 Related Technologies and Problems

Developing distributed applications, such as replication protocols, is a difficult
task that involves interprocess communications, support to heterogeneous plat-
forms, and the ability to adapt, for instance, to failures. In order to deal with
these challenges, several key technologies have been employed. Examples are
computational reflection [22, 20], component based design [5], and design pat-
terns [13]. Different projects provide different perspectives on how to use and
exploit these technologies. In particular, computational reflection has been used

www.manaraa.com

for multiple purposes, ranging from dependable architectures to database sys-
tems. In this section, we highlight how the GAPI uses these technologies and
compares different strategies based on computational reflection.

3.1 Design patterns and Component Based Design

The design of a meta-programming interface is based on design patterns that
have been useful in the broader context of object oriented distributed applica-
tions. Namely, façade [13], inversion-of-control, and container managed concur-
rency patterns are used2:

• The façade pattern allows inspection of diverse data structures through
a common interface. A very well known example is the ResultSet of the
JDBC3 specification, which allows results to be stored in a DBMS na-
tive format. The alternative is the potentially expensive conversion to a
common format such as XML. The proposed architecture suggests using
this for most of the data that is conveyed between processing stages (e.g.,
parser, optimizer).

• The inversion-of-control pattern eases the deployment of software com-
ponents. In detail, meta-objects such as transactions, are exposed to an
object container, which is configured with reflection components. The
container is then responsible for injecting the required meta-objects into
each reflection component during initialization.

• The container managed concurrency pattern allows the container imple-
mentation to schedule event notifications according to its own performance
and correctness criteria. For instance, by ensuring that no two transaction
commit notifications are issued concurrently, implicitly exposes a commit
order. For instance, a notification of available write-sets of two different
transactions can be issued concurrently.

3.2 Reflective architectures

3.2.1 Dependable Systems

The use of computational reflection is not new in the field of dependable appli-
cations and the first approach is from the early nineties. The MAUD, GARF,
FRIENDS, IRL, and FTS systems briefly introduced below are representative
of this approach:

• The MAUD (Meta-level Architecture for Ultra dependability) uses a high-
level language [1] based on the actor model which provides a mathematical
framework for concurrent systems. Actors are first-class entities that can
make decisions, create other actors, receive and send messages.

2http://www.martinfowler.com/articles/injection.html
3http://java.sun.com/javase/technologies/database/

www.manaraa.com

• The GARF System [16] is an extension to a Smalltalk Environment based
on a set of classes and a runtime environment. It divides computation
among data objects, common objects created by the Smalltalk, which
handle functional properties of a system and behavioral objects which
handle crosscutting concerns. Whenever a data object is created, the
GARF runtime environment wraps it with a behavioral object enabling
to intercept invocations to the data object.

• The FRIENDS System (Flexible and Reusable Implementation Environ-
ment for your Next Dependable System) [11] uses a specialized meta-level
protocol based on Open C++, a pre-processing extension to C++, which
provides special statements to associate an object with a meta-level object.

• Interoperable Replication Logic (IRL) and Fault-Tolerant Service (FTS)
provide fault tolerance by using CORBA request portable interceptors to
forward requests to proxies that furnish fault-tolerant services by means
of replication [23, 12].

In such projects, a reflective architecture along with object-oriented pro-
gramming methods frees developers from details on particular dependability
protocols and promotes reusability. In that broad sense, our approach aims at
the same goals, given that it encapsulates details on databases by means of the
GAPI, thus easing the development of plugins and promoting their reusability
among different database vendors. In contrast to previous approaches, GAPI
does not rely on extensions to a programming language nor is bounded to one.

3.2.2 Database Management Systems

Most database management systems provide a reflective mechanism where hooks
are defined by means of triggers, notifying meta-level code whenever a relation
is updated. Albeit native approach might be used to handle some functionalities
required by the GAPI, it might generate an unbearable overhead as the life-cycle
of the meta-information produced (i.e. write-sets) is restricted to the meta-level
execution. Furthermore, this native approach does not provide other important
requirements to easy the development of add-ons. For instance, by using it
one cannot hold the execution when a transaction commits thus forbidding the
development of add-ons such as synchronous replication protocols that require
processing in transactions’ contexts.

In [24], reflection is used to introduce self-tuning properties into database
management systems. Configuration and performance parameters are reflected
into tables and triggers are used to orchestrate interaction among components.
Periodically, a monitor tool, that uses a DB2 UDB snapshot API, collects per-
formance information and store it into tables. Right after, a trigger notifies di-
agnosis functions that decide whether to change configuration information into
tables or not. Once a configuration is modified a trigger notifies the DB2 which
applies the changes. In [30], the same idea is presented but without relying on

www.manaraa.com

a specific DBMS vendor, thus assuming that most DBMSs provide the means
to inspect performance information and change configuration parameters.

The GAPI reflective architecture can also be used to develop self-tuning
solutions by inspecting information on query plans and tracking the number of
concurrent transactions and throughput. The proposed interface was designed
to be generic and it provides only some capabilities to collect this information,
but it can be used and easily extended to achieve those purposes.

In [4], it is described a reflective system on a TP Monitor (Transaction Pro-
cessing Monitor) in order to support the development of extended transaction
models (e.g long running transactions). The functional aspects such as trans-
action execution, lock management and conflict detection are reflected through
adapters which provide meta-level objects and a meta-level programming inter-
face. This interface is different from what the GAPI provides as Roger Barga
et al. are concerned on mechanisms that enable, for instance, to join and split
transactions thus requiring more information on locks and conflicts and different
meta-information on transactions. Not only information on which tuples were
read or updated need to be reflected but also information on types of locks and
pending lock requests. This is necessary to transfer locks acquired and to be ac-
quired on behalf of a transaction to another transaction. The conflict detection
adapter is used to relax consistency when executing extended transaction thus
providing access to shared tuples which would be locked by the normal conflict
detection mechanisms.

In [32], it is proposed a reflection mechanism for database replication. In
contrast to our approach, it assumes that reflection is achieved by wrapping
the DBMS server and intercepting requests as they are issued by clients. By
choosing beforehand such implementation approach, one can only reflect com-
putation at the first stage (statements), i.e. with a very large granularity. Ex-
posing further details requires rewriting large portions of DBMS functionality
at the wrapper level. As an example, Sequoia [9] does additional parsing and
scheduling stages at the middleware level. Theoretically, this proposal can be
more generic and usable on closed systems. In practice, this is not always true,
since DBMSs usually do not support exactly the same language and middle-
ware solutions must be customized for a certain system. Despite that, we will
see later in this paper that this approach can introduce a significant overhead
to latency of transactions by requiring extra communication steps and/or extra
processing of requests.

4 Reflective Architecture and Interfaces

In this section we overview and motivate the GORDA DBMS reflective Ar-
chitecture and Programming Interface, simply denoted GAPI. The full details
about the architecture and interfaces are described in [15]. In the next sections
we will illustrate GAPI with several use cases and evaluate its overhead in real
implementations.

www.manaraa.com

4.1 Target Reflection Domain

The GAPI has been designed having in mind the support for database replica-
tion applications. Although the use of the GAPI is not limited to this class of
applications, replication protocols are quite demanding in terms of functionality
that needs to be exposed, and their requirements strongly influenced the design
and implementation of our reflective interface.

Previous reflective interfaces for database management systems were mainly
targeted at application programmers using the relational model. Their domain
is therefore the relational model itself. Using this model, one can intercept op-
erations that modify relations by inserting, updating, or deleting tuples, observe
the tuples being changed and then enforce referential integrity by vetoing the
operation (all at the meta-level) or by issuing additional relational operations
(base-level).

In contrast, there are protocols concerned with details that are not visible in
the relational model, such as modifying query text to remove non-deterministic
statements, as those involving NOW() and RANDOM(). For instance, one may
be interested in intercepting a statement as it is submitted, whose text can
be inspected, modified (meta-level) and then re-executed, locally or remotely,
within some transactional context (base-level).

Therefore, a more expressive target domain is required. We select an object-
oriented concurrent programming environment. Specifically, we use the Java
platform (but any similar language would also fit our purposes). The fact that
a series of activities (e.g. parsing) is taking place on behalf of a transaction is
reflected as a transaction object, which can be used to inspect the transaction
(e.g. wait for it to commit) or to act on it (e.g. force a rollback).

Meta-level code can register to be notified when specific events occur. For in-
stance, when a transaction commits, a notification is issued and contains a refer-
ence to the corresponding transaction object (meta-object). Actually, handling
notifications is the way that meta-level code dynamically acquires references to
meta-objects describing the on-going computation.

4.2 Processing Stages

The usefulness of the meta-level interface depends on what is exposed as meta-
objects. If a very fine granularity is chosen, the interface cannot be easily
mapped to different DBMSs and the resulting performance overhead is likely to
be high. On the other hand, if a very large granularity is chosen, the interface
may expose too little to be useful.

In contrast, previous approaches assume that reflection is achieved by wrap-
ping the DBMS server and intercepting requests as they are issued by clients
[32]. By choosing beforehand such implementation approach, one can only re-
flect computation at the first stage, i.e. with a very large granularity. Exposing
further details requires rewriting large portions of DBMS functionality at the
wrapper level. As an example, Sequoia [9] does additional parsing and schedul-
ing stages at the middleware level.

www.manaraa.com

Meta-level
(Java plug-in middleware)

Base-level
(SQL application code)

DBMS Context

Database Context

Connection Context

Transaction Context

Request Context

Lo
g
 M

in
e
r

S
ta

g
e

E
xe

cu
to

r
S
ta

g
e

O
p
ti

m
iz

e
r

S
ta

g
e

P
a
rs

e
r

S
ta

g
e

R
e
ce

iv
e
r

S
ta

g
e

Server-side JDBC

Java Stored Procedures

Figure 1: Major meta-level interfaces: processing stages and contexts.

Therefore, we abstract transaction processing as a pipeline as described
in [14] and illustrated in Figure 1. The meta-objects exposed by the GAPI,
at each stage of the pipeline processing, are briefly listed below (for further de-
tails, please see [15]). The plugin is notified of these meta-objects in the order
they are listed.

Receiver Stage receives new statements from the clients. Notifies the recep-
tion of a new statement that can be inspected and/or modified at this
moment;

Parser Stage parses single statements received thus producing a parse tree;

Optimizer Stage receives the parse tree and transforms it, according to vari-
ous optimization criteria, heuristics and statistics into an execution plan;

Executor Stage executes the plan and produces object-sets;

Log Miner Stage deals with mapping from logical objects to physical storage.

In general, one wants to issue notifications at the meta-level whenever com-
putation proceeds from one stage to the next. For instance, when write-sets
are issued at the execution stage, a notification is issued such that they can be
observed. The interface thus exposes meta-objects for each stage and for data
that moves between them.

www.manaraa.com

4.3 Processing Contexts

The meta-interface exposed by the processing pipeline is complemented by
nested context meta-objects, also shown in Figure 1. These show on behalf
of whom some operation is being performed. In detail, the contexts are the
following:

DBMS Context represents the database management system, exposes meta-
data and allow notification of life-cycle events;

Database Context interface represents a database, also exposes metadata
and allow notification of life-cycle events;

Connection Context reflects existing client connections to databases. They
can be used to retrieve connection specific information, such as user au-
thentication or the character set encoding used;

Transaction Context is used to notify events related to a transaction such
as its startup, commit or rollback. Synchronous event handlers available
here are the key to the synchronous replication protocols;

Request Context used to ease the manipulation of the requests within a con-
nection to a database and the corresponding transactions.

Events fired by processing stages refer to the directly enclosing context. Each
context has then a reference to the next enclosing context and can enumerate
all enclosed contexts. This allows, for instance, to determine all connections to
a database or which is the current active transaction in a specific connection.
Notice that some contexts are not valid at the lowest abstraction levels. Namely,
it is not possible to determine on behalf of which transaction a specific disk block
is being flushed by the log miner stage.

Furthermore, a plugin can attach an arbitrary object to each context. This
allows context information to be extended as required by each plugin. As an
example, when handling an event fired by the first stage of the pipeline, signaling
the arrival of a statement in textual format, the plugin gets a reference to the
enclosing transaction context. It can then attach additional information to that
context. Later, when handling an event signaling the readiness of parts of the
write-set, the plugin follows the reference to the same transaction context to
retrieve the information previously placed there.

4.4 Event handling

The meta-level code registers event handlers to intercept the flow of data struc-
tures within the execution pipeline. An event handler can be set in two different
modes: blocking and non-blocking. This is chosen at run time when setting the
handler. When a handler is set in blocking mode, the database server suspends
the current activity until both the event handler has returned and the continue
or cancel methods have been invoked in the event object. The meta-level code

www.manaraa.com

can do it in any order. When a handler is set in non-blocking mode, the database
server does not wait for the order to continue or cancel its execution.

These handlers can be issued concurrently, even if they were registered in
blocking mode, unless if they depend on each other. It is up to the meta-level
code to handle synchronization where required. Dependency relations exist
between events in nested contexts. The notification to continue or cancel exe-
cution can be issued by a different order that were received. This implies that
the commit order is determined by the order by which meta-level code orders
the execution to continue. The meta-level code must ensure that no concur-
rent invocations of such method exist within the same database context. When
no blocking event handler is registered (i.e., no event handler at all or only a
non-blocking event handler), the commit order is not specified.

4.5 Base-level and Meta-level Calls

In this architecture, a base-level call is the client call that makes a request
using SQL statements. The meta-level calls are the reflection calls exposed by
the database engine, that expose the pipeline stages of the execution control.
Meta-level programing allows to have a clean separation between the base- and
meta-level architecture concerns, but it has the advantage that the base- and
meta-level calls can be mixed, as there is no inherent difference between base-
and meta-objects. This happens also in the proposed interface, albeit with some
limitations.

In detail, a direct call to meta-level code can be forced by the plugin pro-
grammer by registering it as a native procedure and then using the CALL SQL
statement. This causes a call to the meta-level code to be issued from the base-
level code within the Execute stage. The target procedure can then retrieve a
pointer to the enclosing Request context and thus to all relevant meta-interfaces.
The reason for allowing this only from the Execute stage is simplicity, as this
is inherently supported by any DBMS, and does not seem to impact generality.
A second reason is that this is where the pipeline can be reentered, should the
meta-level procedure need to callback into the base-level.

Meta-level code can callback into base-level in two different situations. The
first is within a direct call from base-level to issue statements in an existing
enclosing request context. This can be achieved using the JDBC client interface
by looking up the “jdbc:default:connection” driver, as is usually done in Java
procedures. The second option is to use the enclosing Database context to open
a new base-level connection to the database. The reason for allowing base-level
to use the JDBC interface is again simplicity, as this avoids the need to have
interfaces that build contexts and inject external data into internal structures.
This may however have an impact on performance, and is thus the subject of
future work as discussed in Section 7.

The calls between meta-level and base-level are exemplified in the Sec-
tion 5.1. This example shows how to build a caching mechanism using the
proposed interface. As it can be seen in Listing 1, the cacheLookup procedure
is stored in the database when it starts (lines 39 to 58) and is called later when

www.manaraa.com

a new incoming statement is notified (lines 26 to 38). This exemplifies the di-
rect call to the meta-level code. The stored procedure (lines 12 to 25) uses a
database connection to populate the cache in the case that the request is not
present, which exemplifies a call from the base-level to the meta-level.

A second issue when considering base-level calls is whether these also get
reflected. The proposed option is to disable reflection on a case-by-case basis
by invoking an operation on context meta-objects. Therefore, meta-level code
can disable reflection for a given request, a transaction, a specific connection or
even an entire database. Actually this can be used on any context meta-object
and thus for performance optimization. For one, consider a replication protocol,
that is notified that a connection will only issue read-only operations, and thus
ceases monitoring them.

A third issue is how base-level calls issued by meta-level code interact with
regular transaction processing regarding concurrency control. Namely, how are
conflicts that require rollback resolved, namely, in multi-version concurrency
control where the first commiter wins or, more generally, when resolving dead-
locks. The proposed interface solves this by ensuring that transactions issued by
the meta-level do not abort in face of conflicts with regular base-level transac-
tions. Given that a plugin code running at the meta-level has a precise control
on which base-level transactions are scheduled, and thus can prevent conflicts
among those, has been sufficient to solve all considered use cases. The simplicity
of the solution means that implementation within the DBMS resulted in a small
set of localized changes.

4.6 Exception Handling

Regarding base-level exceptions, DBMSs handle most of them by aborting the
affected transaction and generating an error to the application. The proposed
architecture does not change this behavior. Furthermore, the meta-level is noti-
fied by an event issued by the transaction context object; This allows meta-level
to cleanup after an exception has occurred.

Most exceptions within a transaction context that are unhandled at the
meta-level can be resolved by aborting the transaction. However, some event
handlers should not raise exceptions to avoid incoherent information on databases
or recursive exceptions, namely: while starting up or shutting down a database,
while rolling back a transaction, or after committing one. In such points, any
unhandled exception will leave the database in a panic mode requiring manual
intervention to repair the system. Furthermore, in such points, interactions be-
tween the meta-level and base-level are forbidden and any attempt of doing so,
puts the database in a panic mode.

Exceptions from meta-level to base-level calls need additional management.
For instance, while a transaction is committing, meta-level code might need
to execute additional statements to keep track of custom meta-information on
the transaction before proceeding, and this action might cause errors due to
deadlock problems or low amount of resources. Such cases are handled as meta-
level errors, to avoid disseminating errors inside the database while executing

www.manaraa.com

the base-level code.

5 Case Studies

Providing the ability to easily develop and test new features in a database is
highly important both for academic and business purposes. Challenging imple-
mentation problems such as online analytical processing, data mining, caching
mechanisms, replication, self-management, stream processing, approximate an-
swers and probabilistic reasoning, represent some of the interests that have dom-
inated the attention of these communities. In this section, we demonstrate the
usefulness of the GORDA reflective architecture and interface (GAPI) showing
case studies that are driven by the need to change and improve existing database
architectures. In particular, we focus on providing caching mechanisms, repli-
cation and self-management infra-structures.

5.1 Database Caching

Database caching is an important technique to improve system performance and
scalability, increasing throughput and reducing latency, by offloading database
management systems. It is particular suited for applications that have a high
number of read operations when compared to the number of writes. Multi-tier
environments, where a middle tier application server access a database backend,
might also take advantage of this technique, by caching intermediate results thus
reducing communication steps and database usage [21].

In both cases, the GAPI might be used to create a plugin to intercept state-
ments and its results. Using the intercepted information, cache entries may be
created and invalidated. For instance, one might capture statements and infor-
mation provided by the parser and optimizer. In particular, the parser should
be used to easily identify a statement as a query or an update and the optimizer
to provide information on the cost to process the statement. When identified as
query, the result set might be used to populate the cache. This would be done
only when a threshold based on the cost provided by the optimizer was reached.
When identified as an update, the cache should be invalidated, automatically
refreshed or tagged as invalid. Tags might be used to identify, for instance,
the number of changed items since the last refresh, thus allowing a query to
specify the number of stale information that it tolerates. In other words, such
tags might be used to postpone invalidation by relaxing the consistency cri-
terion provided by the database and thus further improving performance and
scalability [17].

In the listing follows, to avoid many details in the description, we illustrate
the ability to capture statements and result sets.

Listing 1: Query Cache example.
1 public c lass QueryCache implements StatementExecut ionListener ,

DatabaseStartupListener , ObjectSetWri teL i s tener {
private stat ic RequestProcessor reqProc = null ;

www.manaraa.com

public QueryCache (DatabaseProcessor dbProc , RequestProcessor reqProc ,
6 Rece iverStage stmtProc , ExecutorStage objProc) {

this . reqProc = reqProc ;
dbProc . s e tDatabaseStar tupL i s t ener (this , true) ;
stmtProc . se tStatementExecut ionLi s tener (this , true) ;
objProc . s e tObjec tSe tWr i t eL i s t ene r (this , true) ;

11 }
public stat ic Resul tSet cacheLookup (St r ing reqId , S t r ing query)
throws SQLException {

Connection c =
DriverManager . getConnect ion (” jdbc : d e f au l t : connect ion ”) ;

16 Transact ion tx = reqProc . getRequest (reqId) . getTransact ion () ;
Object cached = cache . get (query) ;
i f (cached == null) {

java . s q l . Statement s = c . createStatement () ;
Resu l tSet r s = s . executeQuery (query) ;

21 cache . put (tx , query , r s) ;
}
c . c l o s e () ;
return (new Resul tSet [] { cached } ;) ;

}
26 public void handleStatementExecution (Statement s t)

throws SQLException {
switch (s t . g e tSta te ()) {

case Statement .PIPELINE PROCESSING:
i f (s t . getStatement () . s tartsWith (” s e l e c t ”)) {

31 s t . setStatement (”CALL cacheLookup (’ ”
+ s t . getRequest () . ge t Id () + ” ’ , ’ ”
+ s t . getStatement () + ” ’) ”) ;

}
s t . cont inueExecut ion () ;

36 break ;
}

}
public void handleDatabaseStartup (Database db)

throws SQLException {
41 switch (db . getContextState ()) {

case Database .DATABASE STARTING:
db . cont inueExecut ion () ;

break ;
case Database .DATABASE UP:

46 DataSource ds = db . getDataSource () ;
Connection con = ds . getConnect ion () ;
java . s q l . Statement s t = con . createStatement () ;
s t . execute (”CREATE PROCEDURE ”
+ ”cacheLookup (r eq id VARCHAR(10) , ”

51 + ”query VARCHAR(100)) ”
+ ”EXTERNAL NAME ’ gorda . demo . QueryCache . cacheLookup ’ ”) ;

s t . c l o s e () ;
con . c l o s e () ;
db . cont inueExecut ion () ;

56 break ;
}

}
public void handleObjectSetWrite (ObjectSet objSet)
throws SQLException {

61 switch (objSet . g e tSta t e ()) {
case ObjectSet .PIPELINE PROCESSING:

cache . i n v a l i d a t e (objSet) ;
break ;
}

66 objSet . cont inueExecut ion () ;
}

}
abstract class Cache {

void put (Transact ion tx , S t r ing query , Resu l tSet r s) ;
71 St r ing get (S t r ing statement) ;

www.manaraa.com

void i n v a l i d a t e (ObjectSet ws) ;
}

Query Cache Plugin Execution

The Query Caching plugin requires the Database context to capture the mo-
ment when the database is started and the Transaction context to define its
boundaries. It also needs statements provided by the Receiver Stage and write
sets extracted by the Executor Stage. The execution of the Query Cache plugin
consists of the following steps:

Step 1: The database is started and a procedure is registered to make cache
lookups and execute statements that are not in the cache (lines 45 to 55);

Step 2: When a statement is received, the plugin is notified and executes the
previously stored procedure that verifies if the cache contains the required
statement. If the statement is a read operation and the cache contains the
statement, the results are returned to the client. Otherwise, the statement
is executed, the results are added to the cache and then returned to the
client (lines 26 to 36 and the procedure in lines 12 to 25);

Step 3: When a request is executed and the object sets contain a write set,
the plugin is notified and uses the write set to invalidate possible entries
in the cache that contain obsoleted information (lines 59 to 67). It is
worth noticing that this should be done only when (and if) a transaction
commits. This feature and the code of cache invalidation are omitted for
simplification.

5.2 Database Replication

As a use case for database replication, we will use the primary-backup approach,
also called passive replication [25]. In this approach, update transactions are
executed at a single master site under the control of local concurrency control
mechanisms. Updates are then captured and propagated to other sites. The
main advantage of this approach is that it can easily cope with non-deterministic
servers. A major drawback is that all updates are centralized at the primary
and little scalability is gained, even if read-only transactions may execute at
the backups. It can only be extended to multi-master by partitioning data
or defining reconciliation rules for conflicting updates. Asynchronous primary-
backup is the standard replication in most DBMSs and third-party offers. An
example is the Slony-I package for PostgreSQL [29].

Implementations of the primary-backup approach differ whether propaga-
tion occurs synchronously within the boundaries of the transaction or, most
likely, is deferred and done asynchronously. The later provides optimum per-
formance when synchronous update is not required, as multiple updates can
be batched and sent in the background. It also tolerates extended periods of
disconnected operation. The Primary-Backup protocol has a primary replica

www.manaraa.com

Figure 2: Replication Plugin.

where all transactions that update the database are executed. Updates are
either disseminated in transaction’s boundaries (i.e., synchronous replication)
or periodically propagated to other replicas in background (i.e., asynchronous
replication).

Replication Plugin Execution

Synchronous primary-backup replication requires the component that reflects
the Transaction context to capture the moment where the transaction starts
executing, commits, or rollbacks at the primary. It will also need the object
set provided by the Execution stage to extract the write set of a transaction
from the primary and insert it at the backup replicas. The execution of a
primary-backup replicator is depicted in Figure 2. We start by describing the
synchronous variant. It consists of the following steps:

Step 1: Clients send their requests to the primary replica.

Step 2: When a transaction begins, the replicator at the primary is notified,
registers information about this event, and allows the primary replica to
proceed.

Step 3: Right after processing a SQL command the database notifies the replica-
tor through the Execution stage component sending an ObjectSet. Roughly,
the ObjectSet provides an interface to iterate on a statement’s result set
(e.g.,write set). Specifically, in this case, it is used to retrieve statement’s

www.manaraa.com

updates which are immediately stored in a in-memory structure with all
other updates from the same transaction context.

Step 4: When a transaction is ready to commit, the transaction context com-
ponent notifies the replicator of the primary. The replicator atomically
broadcasts the gathered updates to all backup replicas (this broadcast
should be uniform [8]).

Step 5: The write set is received at all replicas. On the primary, the replicator
allows the transaction to commit. On the backups, the replicator injects
the changes in the DBMS.

Final Step: After the transaction execution, the primary replica replies to the
client.

An asynchronous variant of the algorithm can be achieved by postponing
Step 4 (and, consequently, Step 5) for a tunable amount of time.

5.3 Self-Management

Database management systems are becoming more sophisticated and it has
become increasingly more difficult to tune them for particular environments.
The features and tuning variables that DBMSs provide (and the interactions
among these features) have made the administration task a serious challenge. At
the same time, modern computing environments in which DBMSs are deployed
pose new challenges such as data fluctuations, unexpected delays and frequent
outages. Tuning the underlying system parameters became significantly harder
in these complex and unpredictable environments. To address this challenge,
several research efforts emerged from the area of autonomic computing [33, 26].
DBMSs management tools can be manipulated by autonomic systems to monitor
the DBMS and change the system parameters according to defined policies. For
fine grained monitoring, the autonomic system needs more than what is provided
by the DBMS standard API. Weikum et. al. in [33] advocates that the feedback
control loop provided by a reflection API is an appropriate framework for self
tuning and self management algorithms.

There are two types of resources that can influence the behavior of the
system: physical resources (e.g. CPU and memory) and logical resources (the
ones provided by the DBMS). By tuning the logical resources, the system can
make a better use of the physical resources. Given that the system usage changes
with time, the system needs to be continuously monitored and tuned. One way
to implement self-tuning is to use the GAPI to collect information about the
execution of databases and act according to the system needs and policies. For
example, a plugin can be built to calculate the latency of transactions or to
verify the locks grabbed by a transaction.

The following example manages the maximum number of concurrent transac-
tions that are allowed to run on the system, at a certain moment and calculates
it based on information collected as the system executes. It monitors the last

www.manaraa.com

Figure 3: Self Management Plugin.

transaction latency and inter arrival time, the average transaction latency and
inter arrival time and the locks acquired by the transaction.

Self Management Plugin Execution

This plugin requires the component that reflects the Transaction context to
capture the moment where the transaction starts and commit or rollback. It
will also need the object set provided by the Execution Stage to extract the
acquired locks (e.g. write sets without considering lock scaling nor lock hints).
The execution of the Self Tuning plugin, depicted in Figure 3, consists of the
following steps:

Step 1: When a transaction begins, the plugin is notified and logs the infor-
mation about current time for that transaction. The number of running
transactions is also updated. If the maximum threshold is reached, the
transaction is queued for later processing, otherwise it runs normally.

Step 2: When a request is executed, the acquired locks for that transaction are
also logged.

www.manaraa.com

Step 3: When a transaction ends, either by committing or aborting, the infor-
mation about acquired locks, the current transaction latency and inter
arrival time, and the average transaction latency and inter arrival time, is
updated.

Step 4: Based on these new values the system policy is tested and applied,
updating the maximum number of transactions that are allowed to execute
in the system at the same time.

Final Step: If there are pending transactions, try to execute them provided that
concurrent transactions are unlikely to conflict.

As shown, the GAPI can be used as a monitoring API, but also as an API
to act and accommodate the behavior of the DBMS to the system needs. This
example shows how transactions can be delayed to avoid concurrency in the
system, thus avoiding conflicts in the lock manager based on previous executions.

6 Evaluation

The GORDA API has been implemented on three different systems, namely,
Apache Derby, PostgreSQL, and Sequoia. These systems illustrate the effort
required to implement the GAPI using different apporaches. In this section, we
provide a brief description of each of these implementations, including informa-
tion about the number of lines of code required to implement GAPI on each
architecture.

We also evaluate the performance of the Apache Derby GAPI implementa-
tion and compare different approaches to database reflection, namely the in-core
implementation of the GAPI interface and the database wrapper.

6.1 Implementation effort

Apache Derby 10.2

Apache Derby 10.2 [3] is a fully featured database management system with
a small footprint that uses locking to provide serializability. It can either be
embedded in applications or run as a standalone server. It was developed by
the Apache Software Foundation and distributed under an open source license;
It is also distributed as IBM Cloudscape and in the Sun JDK 1.6 as JavaDB.

The GAPI prototype implementation takes advantage of Derby being na-
tively implemented in Java to load meta-level components within the same JVM
and thus closely coupled with the base-level components. Furthermore, Derby
uses a different thread to service each client connection, thus making it possi-
ble that notifications to the meta-level are done by the same thread and thus
reduce to a method invocation, which has negligible overhead. This is therefore
the preferred implementation scenario.

Implementation Effort The total size of the Apache Derby engine is
514941 lines of code. In order to implement the GAPI interface, 29 files were

www.manaraa.com

changed by inserting 1250 lines and deleting 25 lines; in total, 9464 lines of code
were added in new files.

PostgreSQL 8.1

PostgreSQL 8.1 [28] is a fully featured database management system distributed
under an open source license. Written in C, it has been ported to multiple
operating systems, and is included in most Linux distributions as well as in
recent versions of Solaris. Commercial support and numerous third party add-
ons are available from multiple vendors. Since version 7.0, it provides a multi-
version concurrency control mechanism supporting snapshot isolation.

A challenge in implementing the proposed architecture in Postgres is the
mismatch between its concurrency model and the multi-threaded meta-level
runtime. PostgreSQL 8.1, as all previous versions, uses multiple single-threaded
operating system processes for concurrency. This is masked by using the existing
PL/J binding to Java, which uses a single standalone Java virtual machine and
inter-process communication. This imposes an inter-process remote procedure
call overhead on all communication between base and meta-level.

Therefore, the prototype implementation of the GORDA interface in Post-
greSQL 8.1 uses a hybrid approach. Instead of directly patching the reflector
interface on the server, key functionality is added to existing client interfaces
and as loadable modules. The proposed meta-level interface is then built on
these modules. The two layer approach avoids introducing a large number of
additional dependencies in the PostgreSQL code, most notably on the Java vir-
tual machine. As an example, transaction events are obtained by implementing
triggers on transaction begin and end. A loadable module is then provided to
route such events to meta-objects in the external PL/J server.

Implementation Effort The size of PostgreSQL is 667586 lines of code;
the PL/J package adds 7574 lines of C code and 16331 of Java code. In order
to implement the GAPI interface on Postgres 21 files changed by inserting 569
lines and deleting 152 lines, 1346 lines of C code were added in new files, and
11512 lines of Java code added in new files.

Sequoia 3.0

Sequoia [9] is a middleware package for database clustering built as a server
wrapper. It is primarily targeted at obtaining replication or partitioning by
configuring the controller with multiple backends, as well as improving avail-
ability by using several interconnected controllers.

Nevertheless, when configured with a single controller and a single backend,
Sequoia provides a state-of-the-art JDBC interceptor. It works by creating
a virtual database at the middleware level, which re-implements part of the
abstract transaction processing pipeline and delegates the rest to the backend
database.

The current prototype exposes all context objects and the parsing and exe-
cution objects, as well as calling from meta-level to base-level with a separate

www.manaraa.com

connection. It does not allow calling from base-level to meta-level, as execution
runs in a separate process. It can however be implemented by directly intercept-
ing such statements at the parsing stage. It does also not avoid that base-level
operations interfere with meta-level operations, and this cannot be implemented
as described in the previous sections as one does not modify the backend DBMS.
It is however possible to the clustering scheduler already present in Sequoia to
avoid concurrently scheduling base-level and meta-level operations to the back-
end, thus precluding conflicts.

Implementation Effort The size of the generic portion of Sequoia is 137238
lines, which includes the controller and the JDBC driver; additional 29373 lines
implement plugable replication and partitioning strategies, that are not used
by GAPI. In order to implement the GAPI interface on Sequoia, 7 files were
changed by inserting 180 lines and deleting 23 lines, and 8625 lines of code were
added in new files.

Notes on the GAPI Implementation Effort

The effort required to implement a subset of the GAPI interface can roughly be
estimated by the amount of lines changed in the original source tree as well as
the amount of new code added. The numbers presented in the previous sections
show that it is possible to implement the GAPI interface in three different
architectures, with consistently low intrusion in the original source code. This
translates in low effort both when implementing it but also when maintaining
the code when the DBMS server evolves.

Note also that a significant part of the additional code is shared, namely in
the definition of the interfaces (6144 lines). There is also a firm belief most of the
rest of the code could also be shared, as it performs the same container and no-
tification support functionality. This has not happened as each implementation
was developed independently and concurrently.

Finally, it is interesting to note that the amount of code involved in de-
veloping a state-of-the-art server-wrapper is in the same order of magnitude
as a fully-featured database (i.e. hundreds of Klines of code). In comparison,
implementing the GAPI involves 100 times less effort as measured in lines of
code.

6.2 Performance

In this section we evaluate the performance of one prototype implementation
of the proposed interface in Apache Derby, and compare different approaches
to database reflection, namely the in-core implementation of the GAPI inter-
face and the database wrapper. The purpose of the evaluation is to assess the
overhead introduced by an in-core implementation and compare this overhead
with other solutions that are based on a DBMS wrapper. It is important to
evaluate also the overhead of the introduced changes when not in use, which if
not negligible is a major obstacle to the adoption of the proposed architecture.

www.manaraa.com

 0

 0.2

 0.4

 0.6

 0.8

 1

with Sequoiawith listenerswith patchoriginal

m
ea

n
tra

ns
ac

tio
n

la
te

nc
y

(m
s)

(a) Transactions.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

with Sequoiawith listenerswith patchoriginal

m
ea

n
op

er
at

io
n

la
te

nc
y

(m
s)

(b) Operations.

Figure 4: Performance results.

We use the workload generated by the Poleposition benchmark. The Pole-
position [10] benchmark is a framework to build benchmark tests. The tests
create a small database in the DBMS. The size of transactions can change with
the number of operations that are defined for each transaction. The results are
measured in the client and it measures the latency of transactions, in millisec-
onds. In these tests, we measured the latency of update operations, with 1 and
100 operations on each transaction.

The following scenarios were tested: (i) Unmodified DBMS is the original
DBMS, without any modification, serving as the baseline; (ii) DBMS with patch
is the modified DBSM, as described in the previous section, but without any
meta-level objects and thus with all reflection disabled. Ideally, this does not
introduce any performance overhead; (iii) DBMS with listeners is the modified
DBMS with listeners registered for transactional events, statements and object
sets. This means that each transaction generates at several events for each
transaction; and (iv) DBSM with Sequoia is the unmodified DBMS with the
Sequoia database wrapper, but without doing any reflection.

The results are presented in Figure 4. Figure 4(a) shows the mean transac-
tion latency of one transaction with a single operation. As it can be seen, when
no meta-level objects are configured the overhead introduced by the patches is
negligible. We can observe the same behavior when we add a plugin that listens
to events. It is worth noticing that one of the events is the notification of the
object set produced by the transactions. An extra processing is done inside the
DBMS to collect the object set, but it is also negligible. As we can see in the
final test, the impact adding a DBMS wrapper is noticeable, as this causes an
extra communication step and extra processing to parse incoming statements.
Figure 4(b) depicts the mean operation latency and was measured by making
100 operations per transaction. The expected behavior of this test is to have
some of the latency caused by the DBMS wrapper masked by the low number
of commits. Note that the overhead caused by the wrapper is very significant.

www.manaraa.com

7 Conclusions

The development of new DBMS plugins for different purposes, such as replica-
tion and clustering, require more functionality than the one currently provided
current DBMSs transactional APIs. Previous solutions to meet these demands,
such as patching the database kernel or building complex wrappers, require a
large development effort in supporting code, cause performance overhead, and
reduce the portability of middleware. In this paper we advocate the use of a
reflective architecture and interface to expose the relevant information about
transaction processing in a useful way, namely allowing it to be observed and
modified by external plugins.

We have shown the usefulness of the approach by illustrating how the inter-
face can by applied to different settings, such a replication, query caching, among
others. We have also shown that the approach is viable and cost-effective, by
describing its instantiation on three different and representative architectures,
namely the Apache Derby, PostgreSQL, and the Sequoia server wrapper. We
measured the overhead introduced by the in-core implementation on Apache
Derby and compared it with a middleware solution. These prototypes are pub-
lished as open source, can be downloaded from the GORDA project’s home page,
examined, and benchmarked. A modular replication framework that builds on
the proposed architecture and thus runs on PostgreSQL, Apache Derby, or any
DBMS wrapped by Sequoia, is also available there.

The architecture presented here still has some limitations, that should be
addressed by future work. It needs to be extended to perform the composition
of multiple independente meta-level plugins. For instance, how to configure a
DBMS to use a self-management plugin and a replication plugin at the same
time. Again, previous work on reflective systems might provide a direction [2].
Another open issue is the adequacy of the proposed architecture to non-classical
database architectures. Namely, how to match it with a column-oriented DBMS,
such as MonetDB [6], or with an inherently clustered DBMS such as Oracle
RAC [31].

References

[1] Gul Agha, Svend Frlund, Rajendra Panwar, and Daniel Sturman. A Lin-
guistic Framework for Dynamic Composition of Dependability Protocols. In
Proceedings of the IFIP Conference on Dependable Computing for Critical
Applications, 1992.

[2] Mehmet Aksit, Lodewijk Bergmans, and Sinan Vural. An object-oriented
language-database integration model: The composition-filters approach. In
Ole Lehrmann Madsen, editor, Proceedings of the 6th European Conference
on Object-Oriented Programming (ECOOP), volume 615, pages 372–395,
Berlin, Heidelberg, New York, Tokyo, 1992. Springer-Verlag.

www.manaraa.com

[3] Apache DB Project. Apache Derby version 10.2.
http://db.apache.org/derby/, 2006.

[4] Roger Barga and Calton Pu. A Practical and Modular Implementation of
Extended Transaction Models. In VLDB Conference, 1995.

[5] Don S. Batory, Clay Johnson, Bob MacDonald, and Dale von Heeder.
Achieving Extensibility Through Product-Lines and Domain-Specific Lan-
guages: A Case Study. ACM TOSEM, 11:191–214, 2002.

[6] P. A. Boncz and M. L. Kersten. Monet: An Impressionist Sketch of an Ad-
vanced Database System. In Proceedings Basque International Workshop
on Information Technology, San Sebastian, Spain, July 1995.

[7] E. Cecchet, J. Marguerite, and W. Zwaenepoel. C-JDBC: Flexible database
clustering middleware. In USENIX Annual Technical Conference, 2004.

[8] G. Chockler, I. Keidar, and R. Vitenberg. Group communication specifica-
tions: A comprehensive study. ACM Computing Surveys, 33 - 4:427 – 469,
2001.

[9] Continuent. Sequoia v2.9. http://sequoia.continuent.org, 2006.

[10] db4o DeveloperCommunity. Poleposition benchmark.
http://polepos.sourceforge.net/, 2006.

[11] Jean-Charles Fabre and Tanguy Pérennou. A Metaobject Architecture
for Fault-Tolerant Distributed Systems: The FRIENDS Approach. ACM
TOCS, 47:78–95, 1998.

[12] Roy Friedman and Erez Hadad. Client-side Enhancements using Portable
Interceptors. In WORDS, 2001.

[13] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Desing Patterns: Ele-
ments of Reusable Object-Oriented Software. Addison Wesley, 1995.

[14] H. Garcia-Mollina, J. Ullman, and J. Widom. Database Systems: The
Complete Book. Prentice Hall, 2002.

[15] GORDA Consortium. Database support for replication revision 0.1.
http://gorda.di.uminho.pt/download/reports/dbspec.pdf, April 2007.

[16] Rachid Guerraoui, Benoît Garbinato, and Karim Mazouni. Garf: A
Tool for Programming Reliable Distributed Applications. IEEE Parallel
Distributed Technologies, 5:32–39, 1997.

[17] H. Guo, P. Larson, and R. Ramkrishnan. Caching with ”God Enough”,
Concurrency, Consistency, and Completeness. In VLDB Journal, 2005.

[18] B. Kemme and G. Alonso. Don’t be lazy, be consistent: Postgres-R, a new
way to implement database replication. In VLDB Conference, 2000.

www.manaraa.com

[19] Jeffrey O. Kephart and David M. Chess. The Vision of Autonomic Com-
puting. IEEE Computer, 36:41–50, 2003.

[20] Gregor Kiczales. Towards a New Model of Abstraction in Software Engi-
neering. In IMSA Workshop on Reflection and Meta-level Architectures,
1992.

[21] P. Larson, J. Goldstein, and J. Zhou. MTCache: Transparent Mid-Tier
Database Caching in SQL Server. In IEEE ICDCS, 2004.

[22] Pattie Maes. Concepts and Experiments in Computational Reflection. In
OOPSLA, 1987.

[23] C. Marchetti. CORBA Request Portable Interceptors: A Performance
Analysis. In DOA, 2001.

[24] Patrick Martin, Wendy Powley, and Darcy Benoit. Using Reflection to
Introduce Self-Tunning Technology into DBMSs. In IEEE IDEAS, 2004.

[25] S. Mullender. Distributed Systems. ACM Press, 1989.

[26] Baoning Niu, Patrick Martin, Wendy Powley, Randy Horman, and Paul
Bird. Workload adaptation in autonomic dbmss. In CASCON ’06: Pro-
ceedings of the 2006 conference of the Center for Advanced Studies on Col-
laborative research, page 13, New York, NY, USA, 2006. ACM Press.

[27] R. Jiménez Peris, M. Patiño Mart́ınez, B. Kemme, and G. Alonso. Improv-
ing the Scalability of Fault-Tolerant Database Clusters. In IEEE ICDCS,
2002.

[28] PostgreSQL Global Development Group. Postgresql version 8.1.
http://www.postgresql.org/, 2006.

[29] PostgreSQL Global Development Group. Slony-I version 1.1.5.
http://slony.info, 2006.

[30] Wendy Powley and Pat Martin. A Reflective Database-Oriented Frame-
work for Autonomic Managers. In ICAS, 2006.

[31] Angelo Pruscino. Oracle rac: Architecture and performance. In SIGMOD
Conference, page 635, 2003.

[32] J. Salas, R. Jiménez Peris, M. Patiño Mart́ınez, and B. Kemme. Lightweight
reflection for middleware-based database replication. In SRDS’06: Pro-
ceedings of the 25th IEEE Symposium on Reliable Distributed Systems
(SRDS’06), pages 377–390, Washington, DC, USA, 2006. IEEE Computer
Society.

[33] Gerhard Weikum, Axel Mönkeberg, Christof Hasse, and Peter Zabback.
Self-tuning database technology and information services: from wish-
ful thinking to viable engineering. In VLDB Conference, pages 20–31,
Hongkong, China, 2002. Morgan Kaufmann.

